The distribution of mitochondrial activity in relation to optic nerve structure.

نویسندگان

  • Elizabeth A Bristow
  • Philip G Griffiths
  • Richard M Andrews
  • Margaret A Johnson
  • Douglas M Turnbull
چکیده

BACKGROUND The observation of a buildup of mitochondria at the level of the lamina cribrosa in the optic nerve head has traditionally been attributed to axoplasmic stasis. However, this region is also the transition zone for myelination, resulting in differing energy requirements. OBJECTIVE To investigate the relationship between myelination and mitochondrial activity in optic nerve tissue. METHODS Histological, histochemical, and immunocytochemical techniques were used to demonstrate the distribution of myelin, cytochrome-c oxidase activity, and laminar structure in human optic nerve tissue. A study of rabbit optic nerve and retina and unmyelinated human pituitary stalk was also performed. Cytochrome-c oxidase activity in the human optic nerve tissue was measured using microphotometry. RESULTS There was a striking inverse relationship between myelination and mitochondrial distribution in all tissue studied. Statistical analysis of microphotometric data showed this distribution to be highly significant. CONCLUSION We caution against the previous inference of a process of axoplasmic stasis and suggest that, instead, the distribution of mitochondria reflects the functional requirement of different regions of the ganglion cell axon. CLINICAL RELEVANCE Optic neuropathy is associated with several inherited disorders of mitochondria. We suggest that a fine balance exists between energy demand and tissue function in the optic nerve, which may explain why optic nerve pathological features are seen in those with mitochondrial disease.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Histochemical localisation of mitochondrial enzyme activity in human optic nerve and retina.

AIMS To demonstrate the quantitative distribution of mitochondrial enzymes within the human optic nerve and retina in relation to the pathogenesis of ophthalmic disease. METHODS Enucleations were performed at the time of multiple organ donation and the optic nerve and peripapillary retina immediately excised en bloc and frozen. Reactivities of the mitochondrial enzymes cytochrome c oxidase an...

متن کامل

Effects of Drought Stress during Seed Development and Subsequent Accelerated Ageing on Wheat Seed Mitochondrial Ultra-structure, Seedling Antioxidant Enzymes, and Malondialdehyde

In this experiment, wheat plants were exposed to drought stress during seed development then we worked on the obtained seeds. The seed mitochondrial ultra-structure, and antioxidant enzymes in seedling were investigated after exposure to seed accelerated ageing. Drought stress during seed development induced some changes in mitochondrial ultra-structure. Encountering seed development to drought...

متن کامل

Effects of Drought Stress during Seed Development and Subsequent Accelerated Ageing on Wheat Seed Mitochondrial Ultra-structure, Seedling Antioxidant Enzymes, and Malondialdehyde

In this experiment, wheat plants were exposed to drought stress during seed development then we worked on the obtained seeds. The seed mitochondrial ultra-structure, and antioxidant enzymes in seedling were investigated after exposure to seed accelerated ageing. Drought stress during seed development induced some changes in mitochondrial ultra-structure. Encountering seed development to drought...

متن کامل

Effect of scuba-diving on optic nerve and sheath diameters

  Background :There is not any data available about the effect of high bar pressure condition on intracranial pressure. In this study, the effect of diving on the optic nerve and sheath diameters as non-invasive markers of intracranial pressure has been investigated.   Methods : Twenty professional male divers from twenty one volunteers were chosen for this cross-sectional study. Only one perso...

متن کامل

P129: Use of Stem Cells to Regenerate Degenerative Optic Nerve

Stem cells are undifferentiated cells that have the ability to convert to different types of cells and after dividing, they can produce their own cells or other cells. Axons of the retinal ganglion cells, from the optic nerve. These cells lose the ability to regenerate themselves before birth. Optic nerve degeneration can result from various causes including increased intraocular pressure, comp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Archives of ophthalmology

دوره 120 6  شماره 

صفحات  -

تاریخ انتشار 2002